PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation
نویسندگان
چکیده
The rostromedial caudate (rmCD) of primates is thought to contribute to reward value processing, but a causal relationship has not been established. Here we use an inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drug) to repeatedly and non-invasively inactivate rmCD of macaque monkeys. We inject an adeno-associated viral vector expressing the inhibitory DREADD, hM4Di, into the rmCD bilaterally. To visualize DREADD expression in vivo, we develop a non-invasive imaging method using positron emission tomography (PET). PET imaging provides information critical for successful chemogenetic silencing during experiments, in this case the location and level of hM4Di expression, and the relationship between agonist dose and hM4Di receptor occupancy. Here we demonstrate that inactivating bilateral rmCD through activation of hM4Di produces a significant and reproducible loss of sensitivity to reward value in monkeys. Thus, the rmCD is involved in making normal judgments about the value of reward.
منابع مشابه
Distinct roles for primate caudate dopamine D1 and D2 receptors in visual discrimination learning revealed using shRNA knockdown
The striatum plays important motor, associative and cognitive roles in brain functions. However, the rodent dorsolateral (the primate putamen) and dorsomedial (the primate caudate nucleus) striatum are not anatomically separated, making it difficult to distinguish their functions. By contrast, anatomical separation exists between the caudate nucleus and putamen in primates. Here, we successfull...
متن کاملImmediate changes in anticipatory activity of caudate neurons associated with reversal of position-reward contingency.
The primate caudate nucleus plays a crucial role in transforming cognitive/motivational information into eye movement signals. A subset of caudate projection neurons fire before a visual target's onset. This anticipatory activity is sensitive to position-reward contingencies and correlates with saccade latency, which is shorter toward a rewarded position. We recorded single-unit activity of cau...
متن کاملRole of dopamine in the primate caudate nucleus in reward modulation of saccades.
Expected reward impacts behavior and neuronal activity in brain areas involved in sensorimotor processes. However, where and how reward signals affect sensorimotor signals is unclear. Here, we show evidence that reward-dependent modulation of behavior depends on normal dopamine transmission in the striatum. Monkeys performed a visually guided saccade task in which expected reward gain was diffe...
متن کاملRole of tonically active neurons in primate caudate in reward-oriented saccadic eye movement.
Recent studies have suggested that the basal ganglia are essential for reward-oriented behavior. A popular proposal is that the interaction between sensorimotor and reward-related signals occurs in the striatal projection neurons. However, the role of interneurons remains unclear. Using the one-direction-rewarded version of the memory-guided saccade task (1DR), we examined the activity of tonic...
متن کاملNeurons in the primate dorsal striatum signal the uncertainty of object–reward associations
To learn, obtain reward and survive, humans and other animals must monitor, approach and act on objects that are associated with variable or unknown rewards. However, the neuronal mechanisms that mediate behaviours aimed at uncertain objects are poorly understood. Here we demonstrate that a set of neurons in an internal-capsule bordering regions of the primate dorsal striatum, within the putame...
متن کامل